
NIST PQC: Ein Blick zurück und in die Zukunft

Peter Schwabe

February 21, 2023











2



See https://www.ibm.com/quantum/roadmap

3

https://www.ibm.com/quantum/roadmap


Post-quantum crypto

Definition
Post-quantum crypto is (asymmetric) crypto that resists attacks using classical and
quantum computers.

5 main directions
• Lattice-based crypto (PKE and Sigs)

• Code-based crypto (mainly PKE)

• Multivariate-based crypto (mainly Sigs)

• Hash-based signatures (only Sigs)

• Isogeny-based crypto (it’s complicated. . . )

4



Post-quantum crypto

Definition
Post-quantum crypto is (asymmetric) crypto that resists attacks using classical and
quantum computers.

5 main directions
• Lattice-based crypto (PKE and Sigs)

• Code-based crypto (mainly PKE)

• Multivariate-based crypto (mainly Sigs)

• Hash-based signatures (only Sigs)

• Isogeny-based crypto (it’s complicated. . . )

4



The NIST PQC “not-a-competition”

• Inspired by two earlier NIST crypto competitions:
• AES, running from 1997 to 2000
• SHA3, running from 2007 to 2012

• Approach: NIST specifies criteria, everybody is welcome to submit proposals

• Selection through an open process and multiple rounds

• Actual decisions are being made by NIST
• PQC project:

• Announcement: Feb 2016
• Call for proposals: Dec 2016 (based on community input)
• Deadline for submissions: Nov 2017

5



The NIST PQC “not-a-competition”

• Inspired by two earlier NIST crypto competitions:
• AES, running from 1997 to 2000
• SHA3, running from 2007 to 2012

• Approach: NIST specifies criteria, everybody is welcome to submit proposals

• Selection through an open process and multiple rounds

• Actual decisions are being made by NIST

• PQC project:
• Announcement: Feb 2016
• Call for proposals: Dec 2016 (based on community input)
• Deadline for submissions: Nov 2017

5



The NIST PQC “not-a-competition”

• Inspired by two earlier NIST crypto competitions:
• AES, running from 1997 to 2000
• SHA3, running from 2007 to 2012

• Approach: NIST specifies criteria, everybody is welcome to submit proposals

• Selection through an open process and multiple rounds

• Actual decisions are being made by NIST
• PQC project:

• Announcement: Feb 2016
• Call for proposals: Dec 2016 (based on community input)
• Deadline for submissions: Nov 2017

5



The NIST competition: initial overview

Overview tweeted by Jacob Alperin-Sheriff on Dec 4, 2017.
6



The NIST competition, Feb 2019

Encryption / Key agreement
• 9 lattice-based

• 7 code-based

• 1 isogeny-based

Signature schemes
• 3 lattice-based

• 2 symmetric-crypto based

• 4 MQ-based

7



The NIST competition: Jul 2020

Finalists
• 4 key-agreement schemes

• 3 lattice-based
• 1 code-based

• 3 signature schemes
• 2 lattice-based
• 1 MQ-based

Alternate schemes
• 5 key-agreement schemes

• 2 lattice-based
• 2 code-based
• 1 isogeny-based

• 3 signature schemes
• 2 symmetric-crypto based
• 1 MQ-based

8



The NIST competition: Jul 2022

4 schemes selected for standardization
• CRYSTALS-Kyber: lattice-based key agreement

• CRYSTALS-Dilithium: lattice-based signature

• Falcon: lattice-based signature

• SPHINCS+: hash-based signature

4 schemes advanced to round 4
• Classic McEliece: code-based key agreement

• BIKE: code-based key agreement

• HQC: code-based key agreement

• SIKE: isogeny-based key agreement (� 30.07.2022)

• Additionally: call for more signature proposals

9



The NIST competition: Jul 2022

4 schemes selected for standardization
• CRYSTALS-Kyber: lattice-based key agreement

• CRYSTALS-Dilithium: lattice-based signature

• Falcon: lattice-based signature

• SPHINCS+: hash-based signature

4 schemes advanced to round 4
• Classic McEliece: code-based key agreement

• BIKE: code-based key agreement

• HQC: code-based key agreement

• SIKE: isogeny-based key agreement (� 30.07.2022)

• Additionally: call for more signature proposals

9



The SIKE shock

Castryck, Decru, 2022: An efficient key recovery attack on SIDH

• SIDH was “A decade unscathed” (Craig Costello, ePrint 2021/543)

• SIKE lowered parameters during NIST PQC
(following Jaques, Schanck: Quantum cryptanalysis in the RAM model: Claw-finding
attacks on SIKE (ePrint 2019/103))

• Competent, smart people tried to break it
(e.g., Martindale, Panny: How to not break SIDH (ePrint 2019/558))

Yet, full break without any “warning”

10



The SIKE shock

Castryck, Decru, 2022: An efficient key recovery attack on SIDH

• SIDH was “A decade unscathed” (Craig Costello, ePrint 2021/543)

• SIKE lowered parameters during NIST PQC
(following Jaques, Schanck: Quantum cryptanalysis in the RAM model: Claw-finding
attacks on SIKE (ePrint 2019/103))

• Competent, smart people tried to break it
(e.g., Martindale, Panny: How to not break SIDH (ePrint 2019/558))

Yet, full break without any “warning”

10



The SIKE shock

Castryck, Decru, 2022: An efficient key recovery attack on SIDH

• SIDH was “A decade unscathed” (Craig Costello, ePrint 2021/543)

• SIKE lowered parameters during NIST PQC
(following Jaques, Schanck: Quantum cryptanalysis in the RAM model: Claw-finding
attacks on SIKE (ePrint 2019/103))

• Competent, smart people tried to break it
(e.g., Martindale, Panny: How to not break SIDH (ePrint 2019/558))

Yet, full break without any “warning”

10



The SIKE shock

Castryck, Decru, 2022: An efficient key recovery attack on SIDH

• SIDH was “A decade unscathed” (Craig Costello, ePrint 2021/543)

• SIKE lowered parameters during NIST PQC
(following Jaques, Schanck: Quantum cryptanalysis in the RAM model: Claw-finding
attacks on SIKE (ePrint 2019/103))

• Competent, smart people tried to break it
(e.g., Martindale, Panny: How to not break SIDH (ePrint 2019/558))

Yet, full break without any “warning”

10



The SIKE shock

Castryck, Decru, 2022: An efficient key recovery attack on SIDH

• SIDH was “A decade unscathed” (Craig Costello, ePrint 2021/543)

• SIKE lowered parameters during NIST PQC
(following Jaques, Schanck: Quantum cryptanalysis in the RAM model: Claw-finding
attacks on SIKE (ePrint 2019/103))

• Competent, smart people tried to break it
(e.g., Martindale, Panny: How to not break SIDH (ePrint 2019/558))

Yet, full break without any “warning”

10



So, where are we?

“The public-key encryption and key-establishment algorithm that will be standardized is
CRYSTALS-KYBER. The digital signatures that will be standardized are CRYSTALS-Dilithium,
FALCON, and SPHINCS+. While there are multiple signature algorithms selected, NIST
recommends CRYSTALS-Dilithium as the primary algorithm to be implemented”

—NIST IR 8413-upd1

11



So, where are we?

Next steps for deployment
1. Take existing C/asm implementations of Kyber and Dilithium.

2. Integrate into systems and protocols.

Mission accomplished – The world is safe again!

11



A bit of history: the case of MD5

• MD5 is a cryptographic hash function

• Hash functions are used as building blocks all over the place

• 1991: MD5 is proposed by Rivest

• 1993: Collisions in MD5 compression function (den Boer, Bosselaers)

• 1996: Dobbertin, Bosselaers, Preneel: concerns about MD5

• 2004: Wang presents MD5 collisions

• 2008: Rogue CA certificate using MD5
(Sotirov, Stevens, Appelbaum, Lenstra, Molnar, Osvik, de Weger)

• 2012: Flame malware exploits MD5 weaknesses

Replacing MD5 was “easy”!

12



A bit of history: the case of MD5

• MD5 is a cryptographic hash function

• Hash functions are used as building blocks all over the place

• 1991: MD5 is proposed by Rivest

• 1993: Collisions in MD5 compression function (den Boer, Bosselaers)

• 1996: Dobbertin, Bosselaers, Preneel: concerns about MD5

• 2004: Wang presents MD5 collisions

• 2008: Rogue CA certificate using MD5
(Sotirov, Stevens, Appelbaum, Lenstra, Molnar, Osvik, de Weger)

• 2012: Flame malware exploits MD5 weaknesses

Replacing MD5 was “easy”!

12



A bit of history: the case of MD5

• MD5 is a cryptographic hash function

• Hash functions are used as building blocks all over the place

• 1991: MD5 is proposed by Rivest

• 1993: Collisions in MD5 compression function (den Boer, Bosselaers)

• 1996: Dobbertin, Bosselaers, Preneel: concerns about MD5

• 2004: Wang presents MD5 collisions

• 2008: Rogue CA certificate using MD5
(Sotirov, Stevens, Appelbaum, Lenstra, Molnar, Osvik, de Weger)

• 2012: Flame malware exploits MD5 weaknesses

Replacing MD5 was “easy”!

12



A bit of history: the case of MD5

• MD5 is a cryptographic hash function

• Hash functions are used as building blocks all over the place

• 1991: MD5 is proposed by Rivest

• 1993: Collisions in MD5 compression function (den Boer, Bosselaers)

• 1996: Dobbertin, Bosselaers, Preneel: concerns about MD5

• 2004: Wang presents MD5 collisions

• 2008: Rogue CA certificate using MD5
(Sotirov, Stevens, Appelbaum, Lenstra, Molnar, Osvik, de Weger)

• 2012: Flame malware exploits MD5 weaknesses

Replacing MD5 was “easy”!

12



A bit of history: the case of MD5

• MD5 is a cryptographic hash function

• Hash functions are used as building blocks all over the place

• 1991: MD5 is proposed by Rivest

• 1993: Collisions in MD5 compression function (den Boer, Bosselaers)

• 1996: Dobbertin, Bosselaers, Preneel: concerns about MD5

• 2004: Wang presents MD5 collisions

• 2008: Rogue CA certificate using MD5
(Sotirov, Stevens, Appelbaum, Lenstra, Molnar, Osvik, de Weger)

• 2012: Flame malware exploits MD5 weaknesses

Replacing MD5 was “easy”!

12



A bit of history: the case of MD5

• MD5 is a cryptographic hash function

• Hash functions are used as building blocks all over the place

• 1991: MD5 is proposed by Rivest

• 1993: Collisions in MD5 compression function (den Boer, Bosselaers)

• 1996: Dobbertin, Bosselaers, Preneel: concerns about MD5

• 2004: Wang presents MD5 collisions

• 2008: Rogue CA certificate using MD5
(Sotirov, Stevens, Appelbaum, Lenstra, Molnar, Osvik, de Weger)

• 2012: Flame malware exploits MD5 weaknesses

Replacing MD5 was “easy”!

12



A bit of history: the case of MD5

• MD5 is a cryptographic hash function

• Hash functions are used as building blocks all over the place

• 1991: MD5 is proposed by Rivest

• 1993: Collisions in MD5 compression function (den Boer, Bosselaers)

• 1996: Dobbertin, Bosselaers, Preneel: concerns about MD5

• 2004: Wang presents MD5 collisions

• 2008: Rogue CA certificate using MD5
(Sotirov, Stevens, Appelbaum, Lenstra, Molnar, Osvik, de Weger)

• 2012: Flame malware exploits MD5 weaknesses

Replacing MD5 was “easy”!

12



A bit of history: the case of MD5

• MD5 is a cryptographic hash function

• Hash functions are used as building blocks all over the place

• 1991: MD5 is proposed by Rivest

• 1993: Collisions in MD5 compression function (den Boer, Bosselaers)

• 1996: Dobbertin, Bosselaers, Preneel: concerns about MD5

• 2004: Wang presents MD5 collisions

• 2008: Rogue CA certificate using MD5
(Sotirov, Stevens, Appelbaum, Lenstra, Molnar, Osvik, de Weger)

• 2012: Flame malware exploits MD5 weaknesses

Replacing MD5 was “easy”!

12



Challenge 1: Performance

X25519 speed
• keygen: 28187 Skylake cycles

• shared: 87942 Skylake cycles

Kyber-768 speed
• keygen: 39750 Skylake cycles

• encaps: 53936 Skylake cycles

• decaps: 42339 Skylake cycles

X25519 sizes
• public key: 32 bytes

Kyber-768 sizes
• public key: 1184 bytes

• ciphertext: 1088 bytes

13



Challenge 1: Performance

X25519 speed
• keygen: 28187 Skylake cycles

• shared: 87942 Skylake cycles

Kyber-768 speed
• keygen: 39750 Skylake cycles

• encaps: 53936 Skylake cycles

• decaps: 42339 Skylake cycles

X25519 sizes
• public key: 32 bytes

Kyber-768 sizes
• public key: 1184 bytes

• ciphertext: 1088 bytes

13



Challenge 2: A KEM is not DH!

Alice Bob

A← ga B← gb

A

B

K← Ba = (gb)a = gab K← Ab = (ga)b = gab

14



Challenge 2: A KEM is not DH!

Alice Bob

A← ga B← gb

B

A

K← Ba = (gb)a = gab K← Ab = (ga)b = gab

14



Challenge 2: A KEM is not DH!

Initiator Responder

(pk, sk)← KEM.Gen

pk

(ct,K)← KEM.Enc(pk)

ct

K← KEM.Dec(ct, sk)

14



Challenge 3: Bugs, bugs everywhere

Dilithium commit on Dec. 28, 2017
• Bug in Dilithium sampler

• Two consecutive coefficients are equal

• Allows key recovery

• Reported by Peter Pessl on Dec. 27, 2017

15



Challenge 3: Bugs, bugs everywhere

15



Challenge 3: Bugs, bugs everywhere

“. . . two layers of addition/subtraction might overflow the int16_t. I wonder how you deal with
this problem in the f_stack code and why does it still work?”

“. . .On your question on why it still works, I believe that this is an edge case that does not get
triggered by the testing scripts.”

15



Challenge 3: Bugs, bugs everywhere

“. . . two layers of addition/subtraction might overflow the int16_t. I wonder how you deal with
this problem in the f_stack code and why does it still work?”

“. . .On your question on why it still works, I believe that this is an edge case that does not get
triggered by the testing scripts.”

15



Challenge 3: Bugs, bugs everywhere

Both NTT bugs found by Yang, Liu, Shi, Hwang, Tsai, Wang, and Seiler (TCHES 2022/4)

15



Challenge 3: Bugs, bugs everywhere

Both NTT bugs found by Yang, Liu, Shi, Hwang, Tsai, Wang, and Seiler (TCHES 2022/4)

15



Challenge 3b: Bugs in proofs

“We note that a potential issue is that the security proof does not directly apply to Kyber itself,
but rather to a modified version of the scheme which does not compress the public key.”

—NIST IR 8240

“In this comment, we would like to point out a flaw of existing security proofs of the SPHINCS+
hash-based scheme.”

—Mikhail Kudinov, Evgeniy Kiktenko, Aleksey Fedorov (July 2020)

16



Challenge 4: Implementation Security

• Attackers see more than input/output:
• Power consumption
• Electromagnetic radiation
• Timing

• Side-channel attacks:
• Measure information
• Use to obtain secret data

17



Challenge 4: Implementation Security

• Attackers see more than input/output:
• Power consumption
• Electromagnetic radiation
• Timing

• Side-channel attacks:
• Measure information
• Use to obtain secret data

17



Challenge 4: Side-channel countermeasures

Hardware side-channels
• Require physical access to device

• Examples: Power, EM attacks

• Protection through dedicated countermeasures

• Typical slowdown of much more than 100%

• Progress, but no “conclusion”; we don’t know how to protect PQC!

Software side-channels
• Leak through microarchitectural side-channels

• No physical access required, can run remotely
• Traditional countermeasure: constant-time

• No branching on secrets
• No memory access at secret location
• No variable-time arithmetic on secrets

18



Challenge 4: Side-channel countermeasures

Hardware side-channels
• Require physical access to device

• Examples: Power, EM attacks

• Protection through dedicated countermeasures

• Typical slowdown of much more than 100%

• Progress, but no “conclusion”; we don’t know how to protect PQC!

Software side-channels
• Leak through microarchitectural side-channels

• No physical access required, can run remotely
• Traditional countermeasure: constant-time

• No branching on secrets
• No memory access at secret location
• No variable-time arithmetic on secrets

18



Advanced microarchitectural attacks

19



High-assurance PQC

• Formally verified open-source amazing
crypto

• Effort to formally verify crypto
• Currently three main projects:

• EasyCrypt proof assistant
• jasmin programming language
• libjade (PQ-)crypto library

• Core community of ≈ 30–40 people

• Discussion forum with >100 people
20



The toolchain and workflow

21



libjade – Goals

• High-performance implementations of all NIST PQC primitives
(first focus on Kyber and Dilithium)

• Multi-architecture support (first focus on AMD64)

• Easy “drop in” integration for most protocol libraries and systems

• Automated proofs of thread safety and memory safety

• Certified compilation to assembly

• Verified resistance against “classical” timing attacks

• Verified resistance against certain Spectre attacks

• Verified memory zeroization on return

• Computer-verified (manual) proofs of functional correctness

• Connection to computer-verified (manual) cryptographic proofs

22



libjade – Goals

• High-performance implementations of all NIST PQC primitives
(first focus on Kyber and Dilithium)

• Multi-architecture support (first focus on AMD64)

• Easy “drop in” integration for most protocol libraries and systems

• Automated proofs of thread safety and memory safety

• Certified compilation to assembly

• Verified resistance against “classical” timing attacks

• Verified resistance against certain Spectre attacks

• Verified memory zeroization on return

• Computer-verified (manual) proofs of functional correctness

• Connection to computer-verified (manual) cryptographic proofs

22



libjade – Goals

• High-performance implementations of all NIST PQC primitives
(first focus on Kyber and Dilithium)

• Multi-architecture support (first focus on AMD64)

• Easy “drop in” integration for most protocol libraries and systems

• Automated proofs of thread safety and memory safety

• Certified compilation to assembly

• Verified resistance against “classical” timing attacks

• Verified resistance against certain Spectre attacks

• Verified memory zeroization on return

• Computer-verified (manual) proofs of functional correctness

• Connection to computer-verified (manual) cryptographic proofs

22



libjade – Goals

• High-performance implementations of all NIST PQC primitives
(first focus on Kyber and Dilithium)

• Multi-architecture support (first focus on AMD64)

• Easy “drop in” integration for most protocol libraries and systems

• Automated proofs of thread safety and memory safety

• Certified compilation to assembly

• Verified resistance against “classical” timing attacks

• Verified resistance against certain Spectre attacks

• Verified memory zeroization on return

• Computer-verified (manual) proofs of functional correctness

• Connection to computer-verified (manual) cryptographic proofs

22



libjade – Goals

First release of libjade

https://github.com/formosa-crypto/libjade/releases/tag/v2022.12.0
(big thanks to Tiago Oliveira!)

Formally proven Kyber implementation

https://eprint.iacr.org/2023/215 (Joint work with José Bacelar Almeida, Manuel
Barbosa, Gilles Barthe, Benjamin Grégoire, Vincent Laporte, Jean-Christophe Léchenet,
Tiago Oliveira, Hugo Pacheco, Miguel Quaresma, Antoine Séré, and Pierre-Yves Strub)

22

https://github.com/formosa-crypto/libjade/releases/tag/v2022.12.0
https://eprint.iacr.org/2023/215


libjade – Goals

First release of libjade

https://github.com/formosa-crypto/libjade/releases/tag/v2022.12.0
(big thanks to Tiago Oliveira!)

Formally proven Kyber implementation

https://eprint.iacr.org/2023/215 (Joint work with José Bacelar Almeida, Manuel
Barbosa, Gilles Barthe, Benjamin Grégoire, Vincent Laporte, Jean-Christophe Léchenet,
Tiago Oliveira, Hugo Pacheco, Miguel Quaresma, Antoine Séré, and Pierre-Yves Strub)

22

https://github.com/formosa-crypto/libjade/releases/tag/v2022.12.0
https://eprint.iacr.org/2023/215


What if. . . ?

Had NIST required computer-verified software and proofs,

• we would have had way fewer bugs in PQC software;

• we would have much higher confidence in all proofs;

• attacks could be much more focused;

. . . and we would probably not have had a single submission.

23



What if. . . ?

Had NIST required computer-verified software and proofs,

• we would have had way fewer bugs in PQC software;

• we would have much higher confidence in all proofs;

• attacks could be much more focused;

. . . and we would probably not have had a single submission.

23



What if. . . ?

Had NIST required computer-verified software and proofs,

• we would have had way fewer bugs in PQC software;

• we would have much higher confidence in all proofs;

• attacks could be much more focused;

. . . and we would probably not have had a single submission.

23



What if. . . ?

Had NIST required computer-verified software and proofs,

• we would have had way fewer bugs in PQC software;

• we would have much higher confidence in all proofs;

• attacks could be much more focused;

. . . and we would probably not have had a single submission.

23



Want to know more?

PQC resources
• NIST PQC website:

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography

• NIST mailing list:
https://csrc.nist.gov/projects/post-quantum-cryptography/email-list
https://groups.google.com/a/list.nist.gov/g/pqc-forum

• PQC Wiki: https://pqc-wiki.fau.edu

Formosa resources
• https://formosa-crypto.org

• https://formosa-crypto.zulipchat.com/

24

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography/email-list
https://groups.google.com/a/list.nist.gov/g/pqc-forum
https://pqc-wiki.fau.edu
https://formosa-crypto.org
https://formosa-crypto.zulipchat.com/

