

Das FLAIR Framework zur automatischen Analyse von Texten (NLP)

Prof. Dr. Alan Akbik

Lehrstuhl "Maschinelles Lernen" Institut für Informatik Humboldt-Universität zu Berlin

Joined Humboldt-Universität in **January 2020** as professor of Machine Learning

Joined Humboldt-Universität in **January 2020** as professor of Machine Learning

Lots of time in industrial research (IBM Research, Zalando Research)

Joined Humboldt-Universität in **January 2020** as professor of Machine Learning

Lots of time in industrial research (IBM Research, Zalando Research)

Focus on **Natural Language Processing** / deep learning / representation learning / transfer learning / sample-efficient learning

Joined Humboldt-Universität in **January 2020** as professor of Machine Learning

Lots of time in industrial research (IBM Research, Zalando Research)

Focus on **Natural Language Processing** / deep learning / representation learning / transfer learning / sample-efficient learning

Open source NLP framework Flair

Joined Humboldt-Universität in **January 2020** as professor of Machine Learning

Lots of time in industrial research (IBM Research, Zalando Research)

Focus on **Natural Language Processing** / deep learning / representation learning / transfer learning / sample-efficient learning

this talb!

Open source NLP framework Flair

Motivation: From Research to Production

Motivation: From Research to Production

NLP Tasks & Demos

Motivation: From Research to Production

NLP Tasks & Demos

• Text Classification (+usage)

Motivation: From Research to Production

NLP Tasks & Demos

- Text Classification (+usage)
- Sequence Labeling (+research)

Motivation: From Research to Production

NLP Tasks & Demos

- Text Classification (+usage)
- Sequence Labeling (+research)
- Text-Image

Summary and Outlook

Motivation: From Research to Production

NLP Tasks & Demos

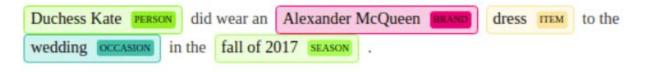
- Text Classification (+usage)
- Sequence Labeling (+research)
- Text-Image

Summary and Outlook

NLP in Industrial Research

Started in 2018 with research at Zalando on *Named Entity Recognition (NER)*

NLP in Industrial Research



Started in 2018 with research at Zalando on Named Entity Recognition (NER)

Back in 2000, People Magazine PUBLISHER highlighted Prince Williams' PERSON style who at the time was a little more fashion-conscious, even making fashion statements at times.

ľ	Now-a-days the pr	ince ma	inly v	wears na	vy COLD	suits	ПЕМ (9	sometin	nes	
	double-breasted	DESIGN),[light blue	COLOR	button-u	аря птем	with	classic	LOOK
	pointed DESIGN	collars PART		r, and	burgundy COLOR		ties ITEM .			

But who knows what the future holds ...

(1) Unhappy with **reproducibility** of papers

(1) Unhappy with **reproducibility** of papers

• Some papers only report results (no code)

(1) Unhappy with **reproducibility** of papers

- Some papers only report results (no code)
- Code is released but (borderline) impossible to get running

(1) Unhappy with **reproducibility** of papers

- Some papers only report results (no code)
- Code is released but (borderline) impossible to get running

(2) New **state-of-the-art** approach to NER

(1) Unhappy with **reproducibility** of papers

- Some papers only report results (no code)
- Code is released but (borderline) impossible to get running

(2) New **state-of-the-art** approach to NER

• How to convince research community of our approach?

(1) Unhappy with **reproducibility** of papers

- Some papers only report results (no code)
- Code is released but (borderline) impossible to get running

(2) New **state-of-the-art** approach to NER

- How to convince research community of our approach?
- (3) Make research **easy-to-use** by us and others

(1) Unhappy with **reproducibility** of papers

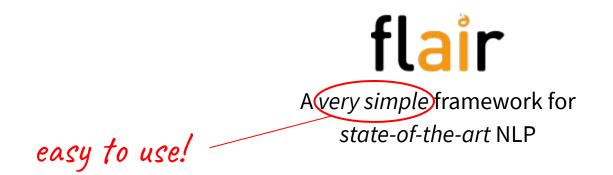
- Some papers only report results (no code)
- Code is released but (borderline) impossible to get running

(2) New **state-of-the-art** approach to NER

• How to convince research community of our approach?

(3) Make research **easy-to-use** by us and others

Idea:



A very simple framework for state-of-the-art NLP

A very simple framework for state-of-the-art NLP

open source!

v0.1

A very simple framework for state-of-the-art NLP

open source!

∀0.1→ v0.2

A very simple framework for state-of-the-art NLP

open source!

∀0.1 → ∀0.2 → **v0.3**

A very simple framework for state-of-the-art NLP

open source!

v0.1 → v0.2 → v0.3 → v0.6.1

A very simple framework for state-of-the-art NLP

open source!

∨0.1 -> ∨0.2 -> ∨0.3 -> **∨0.6.1**

>110 contributors

>500 open source dependant projects

>9.5k stars and >1.4k forks

>300 languages

Motivation: From Research to Production

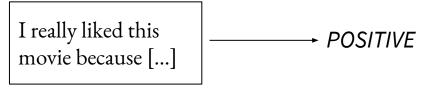
NLP Tasks & Demos

- Text Classification (+usage)
- Sequence Labeling (+research)
- Text-Image

Summary and Outlook

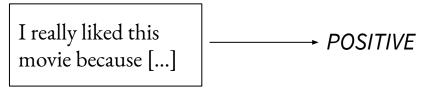
Task: Predict label(s) for a given text

Task: Predict label(s) for a given text


Sentiment Analysis

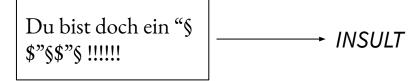
I really liked this movie because [...]

Task: Predict label(s) for a given text


Sentiment Analysis

Task: Predict label(s) for a given text

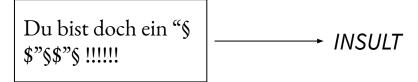
Sentiment Analysis



Task: Predict label(s) for a given text

Sentiment Analysis

Hate Speech Detection



Task: Predict label(s) for a given text

Sentiment Analysis

Hate Speech Detection

Applications:

- Spam Filtering
- Chatbots (intents)
- Political sciences
 - Hate speech
 - Fake news
 - Political bias

Setup Flair

pip install flair

In a local python 3.6+ environment or online environments like CoLab

from flair.models import TextClassifier
from flair.data import Sentence

tagger = TextClassifier.load('sentiment')

sentence = Sentence('The talk was interesting.')

tagger.predict(sentence)

```
print(sentence.labels)
```


from flair.models import TextClassifier
from flair.data import Sentence

```
tagger = TextClassifier.load('sentiment')
```

Load classifier
 (downloads pre-trained model on first call)

```
sentence = Sentence('The talk was interesting.')
```

```
tagger.predict(sentence)
```

```
print(sentence.labels)
```


from flair.models import TextClassifier
from flair.data import Sentence

tagger = TextClassifier.load('sentiment')

sentence = Sentence('The talk was interesting.')

tagger.predict(sentence)

Your text (make object for text you want to classify)

print(sentence.labels)

from flair.models import TextClassifier
from flair.data import Sentence

tagger = TextClassifier.load('sentiment')

sentence = Sentence('The talk was interesting.')

tagger.predict(sentence)

print(sentence.labels)

Pre-Trained Models in Flair

Model ID	Task
sentiment	Sentiment Analysis
ner	4-class Named Entity Recognition
ontonotes-ner	12-class Named Entity Recognition
pos	Part-of-Speech Tagging
de-pos	Part-of-Speech Tagging (German)
frame	Semantic Frame Detection
chunk	Syntactic Chunking
multi-pos	Multilingual Part-of-Speech Tagging

Full list <u>HERE</u>

NLP Task: Sequence Labeling

Named Entity Recognition

implemented in

NLP Task: Sequence Labeling

Named Entity Recognition

Part-of-Speech Tagging

The DET	quick ADJ	brown ADJ	fox NOUN	jumped VERB
over ADP	the DET	sleepy ADJ	dog NOUN	. PUNCT

implemented in

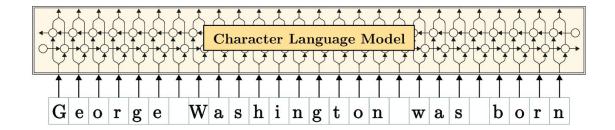
NLP Task: Sequence Labeling

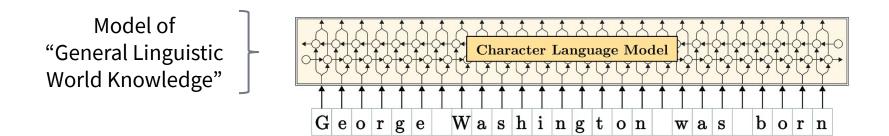
Named Entity Recognition

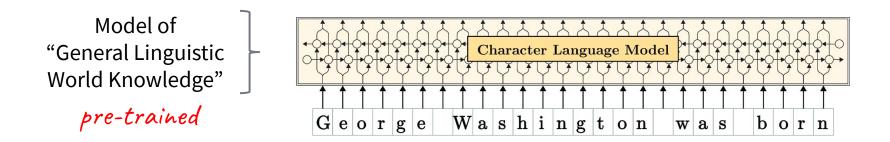
Applications:

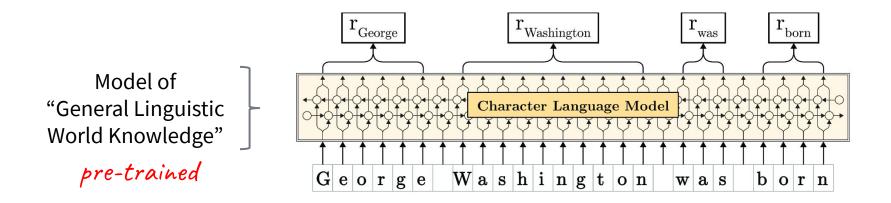
- Biomedical domain
- Law / FinTech
- Social sciences

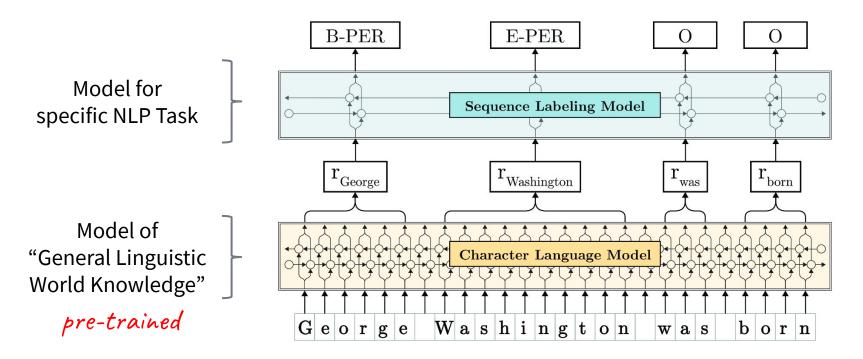
Part-of-Speech Tagging

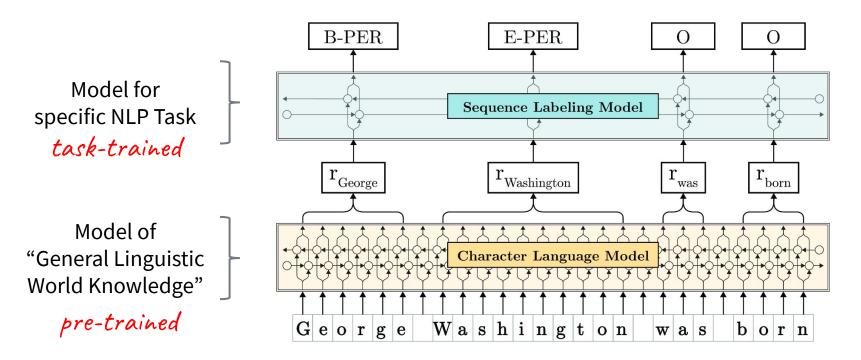

implemented in

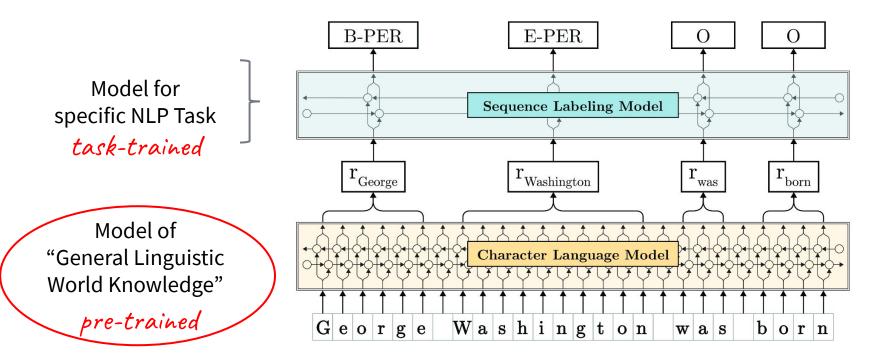






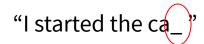






Idea: Make a prediction problem out of plain text

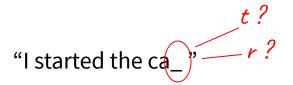
Idea: Make a prediction problem out of plain text


Idea: Make a prediction problem out of plain text

Train to predict next character

"I started the ca_"

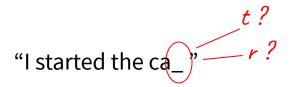
Idea: Make a prediction problem out of plain text



Idea: Make a prediction problem out of plain text

"I started the ca_)" - r?

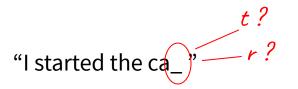
Idea: Make a prediction problem out of plain text



- + no tokenization required
- + very small vocabulary
- + learns subword features

Idea: Make a prediction problem out of plain text

Train to predict next character

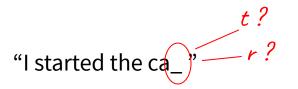

- + no tokenization required
- + very small vocabulary
- + learns subword features

Sample trained model:

Idea: Make a prediction problem out of plain text

Train to predict next character

- + no tokenization required
- + very small vocabulary
- + learns subword features


Sample trained model:

- so complicated.
- a mere step forward.

Idea: Make a prediction problem out of plain text

Train to predict next character

- + no tokenization required
- + very small vocabulary
- + learns subword features

Sample trained model:

- so complicated.
- a mere step forward.
- a bit like a particular provocation.
- entirely confined to the world of animals, but the world has to be profitable.

Idea: Make a prediction problem out of plain text

Train to predict next character

- + no tokenization required
 + very small vocabulary
- + learns subword features

Sample trained model:

- so complicated.
- a mere step forward.
- a bit like a particular provocation.
- entirely confined to the world of animals, but the world has to be profitable.

Flair Embeddings: Evaluation

Approach	NER-English F1-score	NER-German F1-score	Chunking F1-score	POS Accuracy
proposed				
PROPOSED	91.97 ± 0.04	85.78 ± 0.18	96.68±0.03	97.73±0.02
PROPOSED+WORD	93.07±0.10	88.20 ± 0.21	96.70±0.04	97.82 ± 0.02
PROPOSED+CHAR	91.92 ± 0.03	85.88 ± 0.20	96.72±0.05	97.8 ± 0.01
PROPOSED+WORD+CHAR	93.09±0.12	88.32 ± 0.20	96.71±0.07	97.76±0.01
PROPOSED _{+ALL}	92.72±0.09	n/a	96.65±0.05	97.85±0.01
baselines				
HUANG	88.54±0.08	82.32 ± 0.35	95.4±0.08	96.94±0.02
LAMPLE	89.3±0.23	83.78 ± 0.39	95.34±0.06	97.02 ± 0.03
PETERS	92.34±0.09	n/a	96.69±0.05	$97.81 {\pm}~0.02$
best published	and the second second			
	92.22 ± 0.10	78.76	96.37±0.05	97.64
	(Peters et al., 2018)	(Lample et al., 2016)	(Peters et al., 2017)	(Choi, 2016)
	91.93±0.19	77.20	95.96±0.08	97.55
	(Peters et al., 2017)	(Seyler et al., 2017)	(Liu et al., 2017)	(Ma and Hovy, 2016)
	91.71±0.10	76.22	95.77	97.53±0.03
	(Liu et al., 2017)	(Gillick et al., 2015)	(Hashimoto et al., 2016)	(Liu et al., 2017)
	91.21	75.72	95.56	97.30
	(Ma and Hovy, 2016)	(Qi et al., 2009)	Søgaard et al. (2016)	(Lample et al., 2016)

Flair Embeddings: Evaluation

Approach	NER-English F1-score	NER-German F1-score	Chunking F1-score	POS Accuracy
proposed				
PROPOSED	91.97±0.04	85.78 ± 0.18	96.68±0.03	97.73±0.02
PROPOSED+WORD	93.07±0.10	88.20 ± 0.21	96.70±0.04	97.82 ± 0.02
PROPOSED+CHAR	91.92±0.03	85.88 ± 0.20	96.72±0.05	97.8 ± 0.01
PROPOSED+word+char	93.09±0.12	88.32 ± 0.20	96.71±0.07	97.76±0.01
PROPOSED _{+ALL}	92.72±0.09	n/a	96.65±0.05	97.85±0.01
baselines				
HUANG	88.54±0.08	82.32 ± 0.35	95.4±0.08	96.94±0.02
LAMPLE	89.3±0.23	83.78 ± 0.39	95.34±0.06	97.02 ± 0.03
PETERS	92.34±0.09	n/a	96.69±0.05	$97.81 {\pm}~0.02$
best published	IN STREET	1.010 TO		
	92.22 ± 0.10	78.76	96.37±0.05	97.64
	(Peters et al., 2018)	(Lample et al., 2016)	(Peters et al., 2017)	(Choi, 2016)
	91.93±0.19	77.20	95.96±0.08	97.55
	(Peters et al., 2017)	(Seyler et al., 2017)	(Liu et al., 2017)	(Ma and Hovy, 2016)
	91.71±0.10	76.22	95.77	97.53±0.03
	(Liu et al., 2017)	(Gillick et al., 2015)	(Hashimoto et al., 2016)	(Liu et al., 2017)
	91.21	75.72	95.56	97.30
	(Ma and Hovy, 2016)	(Qi et al., 2009)	Søgaard et al. (2016)	(Lample et al., 2016)

One Model, Many Languages

Most models are language specific (English NER, German NER etc.)

One Model, Many Languages

Most models are language specific (English NER, German NER etc.)

It is possible to train a **single model** using training data from multiple languages [Akbik et al., 2019]

- especially if we use multilingual language models
- language identification is implicit

Multilingual Sequence Labeling With One Model. Alan Akbik, Tanja Bergmann and Roland Vollgraf. *Northern Lights Deep Learning Workshop, NLDL 2019*. [pdf]

One Model, Many Languages

Most models are language specific (English NER, German NER etc.)

It is possible to train a **single model** using training data from multiple languages [Akbik et al., 2019]

- especially if we use multilingual language models
- language identification is implicit

implemented in

Multilingual Sequence Labeling With One Model. Alan Akbik, Tanja Bergmann and Roland Vollgraf. *Northern Lights Deep Learning Workshop, NLDL 2019*. [pdf]

NLP Task: Named Entity Recognition - Domains

NLP Task: Named Entity Recognition - Domains

suggested as a promising approach in **patients SPECIES** with **COVID-19 DISEASE** who are admitted to hospitals . In addition to antivin therapy , potential ACE2- GENE and AT1-R GENE - inhibiting strategi and other supportive care , we suggest other potential JAK GENE inhibitors (JAKinibs) and novel anti - inflammatory combination therapion that affect the JAK GENE - STAT GENE pathway in **patients SPECIES** with COVID-19 **DISEASE** . Since the combination of MTX CHEMICAL and **baricitinib CHEMICAL** leads to outstanding clinical outcomes , the addition

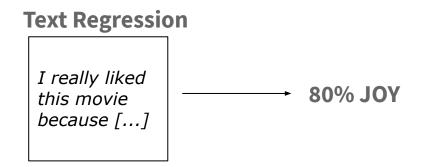
Biomedical Domain

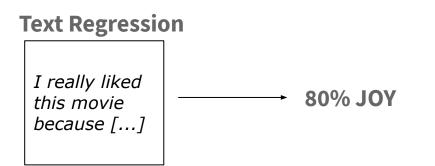
HunFlair [Weber et al., 2020]

NLP Task: Named Entity Recognition - Domains

suggested as a promising approach in **patients SPECIES** with **COVID-19 DISEASE** who are admitted to hospitals . In addition to antivin therapy , potential ACE2- GENE and AT1-R GENE - inhibiting strategi and other supportive care , we suggest other potential JAK GENE inhibitors (JAKinibs) and novel anti - inflammatory combination therapic that affect the JAK GENE - STAT GENE pathway in **patients SPECIES** with COVID-19 **DISEASE** . Since the combination of MTX CHEMICAL and baricitinib CHEMICAL leads to outstanding clinical outcomes , the addition

Biomedical Domain


HunFlair [Weber et al., 2020]


Legal Tech Domain

vom 6. August 2020. Alle Beschwerdeführer befinden sich derzeit gemeinsam im Urlaub auf der Insel Mallorca (ANDSCHAFT), die vom Robert-Koch-Institut ORG) als Risikogebiet eingestuft wird. Sie wollen a 29. August 2020 wieder nach Deutschland (LAND) einreisen, ohne sich gemäß § 1 Abs. 1 bis Abs. 3 der Verordnung zur Testpflicht VERORDNUNG Einreisenden aus Risikogebieten auf das SARS-CoV-2-Virus testen zu lass Die Verordnung sei wegen eines Verstoßes der ihr zugrunde liegenden gesetzlichen Ermächtigungsgrundlage, des § 36 Abs. 7 IfSG GESETZ,

Dataset: <u>WASSA-2018 Shared</u> <u>Task on Implicit Emotions</u>:

• JOY, ANGER, FEAR, ...

I really liked this movie because [...]

Dataset: <u>WASSA-2018 Shared</u> <u>Task on Implicit Emotions</u>:

• JOY, ANGER, FEAR, ...

Similarity Learning

dog catching a frisbee in the park

I really liked this movie because [...]

Dataset: <u>WASSA-2018 Shared</u> <u>Task on Implicit Emotions</u>:

• JOY, ANGER, FEAR, ...

Similarity Learning

dog catching a frisbee in the park

Dataset: Feidegger [Lefakis et al., 2018]

• Fashion images and Germanlanguage descriptions

FEIDEGGER: A Multi-modal Corpus of Fashion Images and Descriptions in German. Leonidas Lefakis, Alan Akbik and Roland Vollgraf. *11th Language Resources and Evaluation Conference, LREC 2018.* [pdf]

Overview

Motivation: From Research to Production

NLP Tasks & Demos

- Text Classification (+usage)
- Sequence Labeling (+research)
- Text-Image

Summary and Outlook

Application

- NLP models in action (sentiment analysis, named entity recognition)
- Introduced Flair Framework for NLP

Application

- NLP models in action (sentiment analysis, named entity recognition)
- Introduced Flair Framework for NLP

try it out!

Application

- NLP models in action (sentiment analysis, named entity recognition)
- Introduced Flair Framework for NLP

try it out!

Upcoming

• "FLERT" Sequence Labeling

try it out!

Application

- NLP models in action (sentiment analysis, named entity recognition)
- Introduced Flair Framework for NLP

Upcoming

- "FLERT" Sequence Labeling
- Few-Shot Learning

try it out!

Application

- NLP models in action (sentiment analysis, named entity recognition)
- Introduced Flair Framework for NLP

Upcoming

- "FLERT" Sequence Labeling
- Few-Shot Learning
- Multilinguality

try it out!

Application

• NLP models in action (sentiment analysis, named entity recognition)

Flair 0.7

• Introduced Flair Framework for NLP

Upcoming

- "FLERT" Sequence Labeling
- Few-Shot Learning -
- Multilinguality

Thank You!

Questions?

