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NLP in Industrial Research

Started in 2018 with research at Zalando on Named Entity Recognition (NER)

Back in 2000, jPeople Magazine [WUBISHER @ highlighted = Prince Williams' #ERS6N  style who at

the time was a little more fashion-conscious , even making fashion statements at times .

Now-a-days the prince mainly wears |navy | suvits mem ( sometimes
double-breasted ), [light blue (@ | button-ups mem with classic Look
pointed oEsiGN | collars earr | , and [bmgundy -] ties 1EM

But who knows what the future holds ...

Duchess Kate #ErsoN' did wear an [AlexanderMcQueen -] dress mem to the
| wedding [BEERSIN) | in the fall of 2017 seasow
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The Flair Framework

flair

A very simple framework for
state-of-the-art NLP

open source!
p >110 contributors

Q GitHub O Py-l—orch >500 open source dependant projects

>9,5k stars and >1.4k forks
..... v0.6.1 >300 languages
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NLP Task: Text Classification

Task: Predict label(s) for a given text Applications:
e Spam Filtering
Sentiment Analysis e Chatbots (intents)
: : Political sciences
I really liked this - POSITIVE *
movie because [...] o Hate speech
o Fake news

o Political bias
Hate Speech Detection

implemented in
Du bist doch ein “§

$7§$7§ 111111 - INSULT fl r




Setup Flair

pip install flair

In a local python 3.6+ environment or online environments like Col.ab


https://colab.research.google.com

NLP Task: Text Classification

from flair.models import TextClassifier

from flair.data import Sentence

tagger = TextClassifier.load('sentiment')

sentence = Sentence('The talk was interesting.')

tagger.predict (sentence)

print (sentence.labels)
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NLP Task: Text Classification

from flair.models import TextClassifier

from flair.data import Sentence
tagger = TextClassifier.load('sentiment')

sentence = Sentence('The talk was interesting.')

tagger.predict (sentence) - Predict

print (sentence.labels)



Pre-Trained Models in Flair

Model ID
sentiment

ner
ontonotes-ner
pos

de-pos

frame

chunk

multi-pos

Task

Sentiment Analysis

4-class Named Entity Recognition
12-class Named Entity Recognition
Part-of-Speech Tagging
Part-of-Speech Tagging (German)
Semantic Frame Detection
Syntactic Chunking

Multilingual Part-of-Speech Tagging

Full list HERE



https://github.com/flairNLP/flair/blob/master/resources/docs/TUTORIAL_2_TAGGING.md
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NLP Task: Sequence Labeling

Named Entity Recognition Applications:

e Biomedical domain

. - —— e Law/FinTech
disclosed that he held discussions on the possibility in | Davos [toe e Social sciences

with the | BBC (6@

Belgium [£oc¢| @ ’s prime minister, = Charles Michel PErR @ | has

’s director general ,  Tony Hall [pEr

Part-of-Speech Tagging implemented in

The oer quick ap;  brown ap  fox Nouw [ jumped -| |
over apP the per sleepy am | dog NOUN ‘ PL‘Ncr\ fl o r
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Flair Embeddings: Evaluation

NER-English NER-German Chunking POS
Approach F1-score F1-score F1-score Accuracy
proposed
PROPOSED 91.97+0.04 85.78 £0.18 96.68+0.03 97.73+0.02
PROPOSED, yworp 93.07+0.10 88.20 £ 0.21 96.70+0.04 97.82+0.02
PROPOSED.cuar 91.92+0.03 85.88 +£0.20 96.721+0.05 97.84+0.01
PROPOSED.worp+cuar ~ 93.0910.12 88.32 + 0.20 96.71£0.07 97.76+0.01
PROPOSED, 51, 92.72+0.09 n/a 96.65+0.05 97.85+0.01
baselines
HUANG 88.54+0.08 82.32 +0.35 95.4+0.08 96.94+0.02
LAMPLE 89.3+0.23 83.78 £ 0.39 95.34+0.06 97.02+0.03
PETERS 92.34+0.09 n/a 96.69+0.05 97.81+ 0.02
best published

92.224+0.10 78.76 96.37+0.05 97.64

(Peters et al., 2018) (Lample et al., 2016)  (Peters et al., 2017) (Choi, 2016)

91.9340.19 77.20 95.96+0.08 97.55

(Peters et al., 2017) (Seyler et al., 2017) (Liu et al., 2017) (Ma and Hovy, 2016)

91.71+0.10 76.22 95.77 97.53+0.03

Contextual String Embeddings for Sequence Labeling. A. Akbik, D. Blythe and R. Vollgraf. COLING 2018.

(Liu et al., 2017)
91.21
(Ma and Hovy, 2016)

(Gillick et al., 2015)
75.72
(Qi et al., 2009)

(Hashimoto et al., 2016)

95.56
Sggaard et al. (2016)

(Liu et al., 2017)
97.30
(Lample et al., 2016)
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It is possible to train a single model using training data from
multiple languages [Akbik et al., 2019]

e especially if we use multilingual language models

e language identification is implicit

Multilingual Sequence Labeling With One Model. Alan Akbik, Tanja Bergmann and
Roland Vollgraf. Northern Lights Deep Learning Workshop, NLDL 2019. [pdf]
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One Model, Many Languages

Most models are language specific (English NER, German NER etc.)

It is possible to train a single model using training data from
multiple languages [Akbik et al., 2019]

e especially if we use multilingual language models

e language identification is implicit implemented in

flair

Multilingual Sequence Labeling With One Model. Alan Akbik, Tanja Bergmann and
Roland Vollgraf. Northern Lights Deep Learning Workshop, NLDL 2019. [pdf]
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Biomedical Domain
HunFlair [Weber et al., 2020]

Legal Tech Domain

suggested as a promising approach in [patients -] with
COVID-19 pisease  who are admitted to hospitals . In addition to antivi

therapy , potential ACE2- GeNeé and AT1-R GENE - inhibiting strateg
and other supportive care , we suggest other potential JAK [GENE

inhibitors ( JAKinibs ) and novel anti - inflammatory combination therapi
that affect the JAK [GENE - STAT [GENE pathway in [patients -]

with COVID-19 biseaseé . Since the combination of | MTX and
baricitinib [

) leads to outstanding clinical outcomes , the additi

vom 6. August 2020. Alle Beschwerdefiihrer befinden sich derzeit
gemeinsam im Urlaub auf der Insel | Mallorca _] , die vom
'Robert-Koch-Institut

29. August 2020 wieder nach Deutschland 1axp einreisen, ohne sich

als Risikogebiet eingestuft wird. Sie wollen i

gemals § 1 Abs. 1 bis Abs. 3 der Verordnung zur Testpflicht 'VERORDNUNG
Einreisenden aus Risikogebieten auf das SARS-CoV-2-Virus testen zu las:
Die Verordnung sei wegen eines VerstofRes der ihr zugrunde liegenden
gesetzlichen Erméachtigungsgrundlage, des \ § 36 Abs. 7 IfSG [GESEiZ

7
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Other NLP Tasks (Beta)

Text Regression

_ Dataset: WASSA-2018 Shared
‘;hr.ia:?’;/’{;ed . 80% JOY Task on Implicit Emotions:
/ 41

because [...] e JOY,ANGER, FEAR, ...

Similarity Learning

dog Dataset: Feidegger [Lefakis et al.,
catching a 2018]

frisbee in e Fashionimages and German-
the park language descriptions

FEIDEGGER: A Multi-modal Corpus of Fashion Images and Descriptions in German. Leonidas Lefakis,
Alan Akbik and Roland Vollgraf. 11th Language Resources and Evaluation Conference, LREC 2018. [pdf]


http://implicitemotions.wassa2018.com/
http://implicitemotions.wassa2018.com/
https://alanakbik.github.io/papers/lrec2018_feidegger.pdf
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Summary

Application

e NLP modelsin acti iment analysis, named entity recognition)
e IntroducedClair Framework for NLP

try it ovt!

Upcoming
e “FLERT” Sequence Labeling
e Few-Shot Learning = Flair 0.7

e Multilinguality



Thank You!

Questions?

poteuilcike Zappe



